Analysis of Internet Traffic Using Average Daily Peak Hour (ADPH)
نویسندگان
چکیده
منابع مشابه
Estimating Annual Average Daily Traffic Using Daily Adjustment Factor
This study dealt with estimating AADT which serves the important basic data in transportation sector. AADT estimation is fundamental to the analysis of transportation data sets and the management of transportation systems. AADT is estimated using short-term traffic counts at most sites because permanent traffic counts is installed at limited sites. To estimate AADT, an adjustment factor applica...
متن کاملInternet traffic classification using multifractal analysis approach
In this work, we present a traffic classifier based on the theory of multifractal network traffic. We use precisely the concept of multiplicative binomial cascades to get a feature vector to be used in the classification scheme. This vector is obtained by the multiplier variances of the multiplicative cascade traffic view. We analyze the performance of the technique proposed by a popular ML S...
متن کاملanalysis of ruin probability for insurance companies using markov chain
در این پایان نامه نشان داده ایم که چگونه می توان مدل ریسک بیمه ای اسپیرر اندرسون را به کمک زنجیره های مارکوف تعریف کرد. سپس به کمک روش های آنالیز ماتریسی احتمال برشکستگی ، میزان مازاد در هنگام برشکستگی و میزان کسری بودجه در زمان وقوع برشکستگی را محاسبه کرده ایم. هدف ما در این پایان نامه بسیار محاسباتی و کاربردی تر از روش های است که در گذشته برای محاسبه این احتمال ارائه شده است. در ابتدا ما نشا...
15 صفحه اولDaily Nigerian Peak Load Forecasting Using Network
A daily peak load forecasting technique that uses artificial neural network presented in this paper. A neural network of used to predict the daily peak load for a period available using one step ahead prediction load to the actual load. The ith index is used as load for the ith day of the year following networks are trained by the back propagation algorithm. from the Nigerian national electric ...
متن کاملDynamics of temporal correlation in daily Internet traffic
In order to characterize the dynamics of self-similar behavior in daily Internet traffic, we analyze the time series of traffic volume for 24-hour period in wide-area Internet, by using detrended fluctuation analysis (DFA)—a well-known method of characterizing nonstationarity in a time series. We show that the estimated scaling exponent (which is directly related to the Hurst parameter) of traf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Conference SENATIK STT Adisutjipto Yogyakarta
سال: 2018
ISSN: 2528-1666,2337-3881
DOI: 10.28989/senatik.v4i0.164